
THE SUMMATION OF RANDOM CAUSES AS THE 
SOURCE OF CYCLIC PROCESSES* 

By EUGEN SLUTZKY 

I. SCOPE OF THE INVESTIGATION 

ALMOST ALL of the phenomena of economic life, like many other 
processes, social, meteorological, and others, occur in sequences of 
rising and falling movements, like waves. Just as waves following each 
other on the sea do not repeat each other perfectly, so economic cycles 
never repeat earlier ones exactly either in duration or in amplitude. 
Nevertheless, in both cases, it is almost always possible to detect, even 
in the multitude of individual peculiarities of the phenomena, marks 
of certain approximate uniformities and regularities. The eye of the 
observer instinctively discovers on waves of a certain order other 
smaller waves, so that the idea of harmonic analysis, viz., that of the 
possibility of expressing the irregularities of the form and the spacing 
of the waves by means of the summation of regular sinusoidal fluctua- 
tions, presents itself to the mind almost spontaneously. If the results 
of the analysis happen sometimes not to be completely satisfactory, 
the discrepancies usually will be interpreted as casual deviations super- 
posed on the regular waves. If the analyses of the first and of the second 
halves of a series give considerably divergent results (such as, for ex- 
ample, were found by Schuster while analyzing sunspot periodicity),' 
it is, even then, possible to find the solution without giving up the 
basic concept. Such a discrepancy may be the result of the interference 
of certain factors checking the continuous movement of the process and 
substituting for the former regularity a new one which sometimes may 

* Professor Eugen Slutzky's paper of 1927, "The Summation of Random 
Causes as the Source of Cyclic Processes," Problems of Economic Conditions, 
ed. by The Conjuncture Institute, Moskva (Moscow), Vol. 3, No. 1, 1927, has 
in a sense become classic in the field of time-series analysis. While it does not 
give a complete theory of the time shape that is to be expected when a given 
linear operator is applied to a random (auto-non-correlated) series, it has given 
us a number of penetrating and suggestive ideas on this question. It has been, 
and will no doubt continue to be, highly stimulating for further research on this 
vast and-not least for business-cycle analysis-most important problem. Un- 
fortunately Professor Slutzky's paper so far has been available only in Russian 
(with a brief English summary). Some years ago Professor Henry Schultz had 
the original article translated into English by Mr. Eugene Prostov, and suggested 
that it be published in ECONOMETRICA. At the request of the Editor Professor 
Slutzky has prepared for our Journal a revised English version with which he 
has incorporated also a number of important results obtained after 1927.- 
EDITOR. 

1 Arthur Schuster, "On the Periodicities of Sunspots," Phil. Trans., Series A, 
Vol. 206, 1906, p. 76. . 
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even happen to be of the same type as the former one. Empirical series 
are, unfortunately, seldom long enough to enable one definitely to prove 
or to refute such an hypothesis. Without dwelling'on the history of com- 
plicated disputes concerning the above-mentioned problem, I will men- 
tion only two circumstances as the starting points for the present in- 
vestigation-one, so to speak, in the field of chance, the other in the 
field of strict regularity. 

One usually takes the analysis of the periodogram of the series as the 
basis for the discovery of hidden periodicities. Having obtained from 
the periodogram the values of the squares of the amplitudes of the 
sinusoids, calculated by the method of least squares for waves of vary- 
ing length, we ask whether there is a method of determining those 
waves which do not arise from chance. Schuster apparently has dis- 
covered a suitable method ;2 but we must give up his criterion when we 
remember that among his assumptions is that of independence of the 
successive observations. As a general rule we find that the terms of an 
empirical series are not independent but correlated and at times cor- 
related very closely. This circumstance, as is known, may very per- 
ceptibly heighten the oscillation of the derived characteristics of the 
series, and it is quite conceivable that waves satisfying Schuster's cri- 
terion would in fact be casual-just simulating the presence of a strict 
regularity.3 Thus we are led to our basic problem: is it possible that a 
definite structure of a connection between random fluctuations could 
form them into a system of more or less regular waves? Many laws of 
physics and biology are based on chance, among them such laws as the 
second law of thermodynamics and Mendel's laws. But heretofore we 
have known how regularities could be derived from a chaos of discon- 
nected elements because of the very disconnectedness. In our case we 
wish to consider the rise of regularity from series of chaotically-random 
elements because of certain connections imposed upon them. 

Suppose we are inclined to believe in the reality of the strict pe- 
riodicity of a business cycle, such, for example, as the eight-year period 
postulated by Moore.4 Then we should encounter another difficulty. 
Wherein lies the source of the regularity? What is the mechanism of 

2 A. Schuster, "On the Investigation of Hidden Periodicities, etc.," Terrestrial 
Magnetism, Vol. 3, 1898. 

8 The further development of Schuster's methods, which we find in his ex- 
tremely valuable paper, "The Periodogram of the Magnetic Declination as Ob- 
tained from the Records of the Greenwich Observatory during the Years 1871- 
1895," Trans. of the Cambridge Philos. Soc., Vol. 18, 1900, p. 107, seems to over- 
come this difficulty. Because it is rather unfinished in mathematical respects, 
however, the influence of this paper seems not to have been comparable to its 
importance. 

4 H. L. Moore, Generating Economic Cycles, New York, 1923. 
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causality which, decade after decade, reproduces the same sinusoidal 
wave which rises and falls on the surface of the social ocean with the 
regularity of day and night. It is natural that even now, as centuries 
ago, the eyes of the investigators are raised to the celestial luminaries 
searching in them for an explanation of human affairs. One can daunt- 
lessly admit one's right to make bold hypotheses, but still should not 
one try to find out other ways?5 What means of explanation, however, 
would be left to us if we decided to give up the hypothesis of the super- 
position of regular waves complicated only by purely random compo- 
nents? The presence of waves of definite orders, the long waves embrac- 
ing decades, shorter cycles from approximately five to ten years in 
length, and finally the very short waves, will always remain a fact 
begging for explanation. The approximate regularity of the periods is 
sometimes so distinctly apparent that it, also, cannot be passed by 
without notice. Thus, in short, the undulatory character of the processes 
and the approximate regularity of the waves are the two facts for which 
we shall try to find a possible source in random causes combining them- 
selves in their common effect. 

The method of the work is a combination of induction and deduction. 
It was possible to investigate by the deductive method only a few 
aspects of the problem. Generally speaking, the theory of chance waves 
is almost entirely a matter of the future. For the sake of this future 
theory one cannot be too lavish with experiments: it is experiment 
that shows us totally unexpected facts, thus pointing out problems 
which otherwise would hardly fall within the field of the investigator. 

II. COHERENT SERIES OF CONSEQUENCES OF RANDOM 

CAUSES AND THEIR MODELS 

There are two kinds of chance series: (1) those in which the probabil- 
ity of the appearance, in a given place in the series, of a certain value 
of the variable, depends on previous or subsequent values of the vari- 
able, and (2) those in which it does not. In this way we distinguish 

5 A similar viewpoint is found in the remarkable work of G. U. Yule, "Why 
Do We Sometimes Get Nonsense-Correlations between Time Series?" Journal 
of the Royal Statistical Society, Vol. 89, 1926. This work approaches our theme 
rather closely. 

6 The following exposition is based on a large amount of calculation. The 
author expresses special gratitude to his long-time collaborator, E. N. Pomer- 
anzeva-Ilyinskaya and also to 0. V. Gordon, N. F. Rein, M. A. Smirnova and E. V. 
Luneyeva. The calculations were carefully checked, almost all work having been 
independently performed by two individuals. It is very unlikely that undetected 
errors are sufficiently significant to affect to any perceptible degree our final 
conclusions. A few errors, detected in the course of time in Tables I, III, and IX 
of the original paper, are noted at the end of this paper, and an error in Figure 7, 
B4, has been corrected when it was re-drawn. 
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between coherent7 and incoherent (or random) series. The terms of the 
series of this second kind are not correlated. In series in which there is 
correlation between terms, one of the most important characteristics is 
the value of the coefficient of correlation between terms, considered as 
a function of the distance between the terms correlated. We shall call 
it the correlational function of the corresponding series and shall limit 
our investigation to those cases in which the distribution of probabili- 
ties remains constant. The coefficient of correlation, then, is exclusively 
determined by the distance between the terms and not by their place 
in the series. The coefficient of correlation of each member with itself 
(ro) will equal unity, and its coefficient of correlation (rt) with the tth 
member following will necessarily equal its coefficient (r_t) with the 
tth member preceding. 

Any concrete instance of an experimentally obtained chance series 
we shall regard as a model of empirical processes which are structurally 
similar to it. As the basis of the present investigation we take three 
models of purely random series and call them the first, second, and 
third basic series. These series are based on the results obtained by 
the People's Commissariate of Finance in drawing the numbers of a 
government lottery loan. For the first basic series, we used the last 
digits of the numbers drawn; for the second basic series, we substituted 
0 for each even digit and 1 for each odd digit; the third basic series 
was obtained in the same way as the second, but from another set of 
numbers drawn.8 

Let us pass to the coherent series. Their origin may be extremely 
varied, but it seems probable that an especially prominent role is 
played in nature by the process of moving summation with weights of 
one kind or another; by this process coherent series are obtained from 
other coherent series or from incoherent series. For example, let causes 

... xi2, xi-1, xi, * * produce the consequences ... Yi-2, Yi-1, Yi, 

. . ., where the magnitude of each consequence is determined by the 
influence, not of one, but of a number of the preceding causes, as for 
instance, the size of a crop is determined, not by one day's rainfall, 
but by many. If the influence of causes in retrospective order is ex- 
pressed by the weights Ao, A1, A2, * * * A,,,, then we shall have 

y= Aoxi + A1xi-_ + * * + Anl1Xi-(n_1)y 
( i) i = A.oxi + * + An-2xi-(n_l)+ An-lXi-n 

.. .. .. .. .. .. .. .. .. .. .. ... 

7 I venture to propose this name because it seems to me that it truly expresses 
what is intended, namely, the existence of some connection between the elements 
or parts of a thing (for example, of a series), but not a connection between this 
thing as a whole and another. 

8 The tables giving these series and seven others derived from them will be 
found in the original paper (loc. cit., pp. 57-64) and are not repeated here. 
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Each of two adjacent consequences has one particular cause of its 
own, and (n-1) causes in common with the other consequence. Be- 
cause the consequences possess causes in common there appears be- 
tween them a correlation even though the series of causes are incoher- 
ent. When all the weights are equal (simple moving summation) the 
coefficient of correlation expresses the share of the common causes in 
the total number of independent causes on which the consequences 
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FIGUJRE 1.-The first 100 terms of the first basic series. 
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FIGURE 2.-The first 1000 terms of Model II. 

depend (as has long been known from the theory of the experiment of 
Darbishire); then 

n-1 n-2 1 
r= 1, r1 = = ,r= -= , * * *r_=r(fl=- 

n n n 
further coefficients being equal to zero. By taking a ten-item moving 
summation of the first basic series, Model I was obtained.9 A small 
section of Model I is plotted in Figure 3 with an index'0 of the English 

I In addition, 5 was added to each sum. This does not change the properties 
of the series. Neither does it make any difference as to the method of numbering 
consequences in comparison with the scheme used in formula (1). At the outset 
of the work, it seemed to be technically more convenient to give the consequence 
the same number as the earliest cause and not the latest. Thus, for example, for 
Model I, YO c XO +?X +X2 +* +x9 +5 

10 Dr. Dorothy S. Thomas, "Quarterly Index of British Cycles," in W. L. 
Thorp, Business Annals, New York, 1926, p. 28. 
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business cycles for 1855-1877 in juxtaposition-an initial graphic dem- 
onstration of the possible effects of the summation of unconnected 
causes. 

In turn the consequences become causes. Taking a ten-item moving 
summation of Model I, we obtained the 1000 numbers of Model II. 
Performing a two-item moving summation twelve times in succession 
on the third basic series," we obtained the 1000 numbers of Model IVa. 
First and second differences of Model IVa give Models IVb and IVc 
respectively (See Figure 4). Furthermore, the application of scheme 
(1) to the second basic series gives'2 Model III if the weights used are 

40 w X X 60 

30 

1855 1860 1865 1870 1875 

FIGURJE 3. An index of English business cycles from 1855 to 1877; scale 
on the left side. ---------Terms 20 to 145 of Model I; scale on the right- side. 

104 times the ordinates of the Gaussian curve taken at intervals of 
0.1o. Because this model was very smooth it appeared sufficient to 
use only the 180 even members out of the 360 items (see Figure 11 
under the numbers 0, 2, 4, . . . 358). Model IIIa-the last one-is 104 

11 It actually was computed by applying the scheme (1) to the third basic 
series with the weights 1, 12, 66, 220, 495, 792, 924, 792, - * *, 12, 1, because 
s-fold simple summation of two items is equivalent, as can be shown easily, to 
direct summation with the weights C,C, C', C2, C * *, C,, (where C, is the number of 
combinations of s things taken k at a time. 

12 The exact values of Model III could be obtained by multiplying the cor- 
responding items of the basic series by the exact values of the function 104 exp 
{- I(0.1t)2 } /N/y2-7, for integral values of t. This function was the basis of ob- 
taining the 4th differences of Model III. Approximate values of Model III were 
found by using a set of weights composed of 95 numbers corresponding to the 
values of the above function for integral values of t from -47 to +47, with the 
numbers less than 1 rounded off to the nearest tenth and numbers greater than 1 
to whole units. The numbers of the basic series were written on a ribbon which 
we slid along the column of weights. Inasmuch as the basic series consisted of 
zeros and ones, all of the computations were plain additions. For Model IVa, a 
ribbon with holes in the place of unities was constructed. 
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times the 4th differences of the numbers of Model III from the 7th to 
the 97th.13 

IVa 
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FIGURE3 4.-The first 100 terms of Models IVa, IVb, and IlYc. 

We could not be satisfied by a smaller number of models because it 
was necessary to observe their various properties and to havre illustra- 

"3For the calculation of these differences the accuracy with which we deter- 
mined the items of Model III was not sufficient, so the following method was 
used: It is easy to see that the nth order diff erences of the items of the series ob- 
tained by scheme (1) are equivalent to those computed by the same scheme 
but applying weights equal to the differences of the original weights (keeping in 
mind that the series of original weights is extended at both ends with zeros). 
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FIGURE 5.-An example of the crossing of random weights. The weights of 
the causes for each of 10 successive summations are shown, i.e., Ak'(1), Ak'(2), 

* ,Ak'(10). See Appendix, Section 1. 

With the help of S. Pineto's Tables de logarithmes vulgaires a dix decimales, St. 
Petersburg, 1871, the values of the function 

exp { - i(0.1t)2}/V27r 
were obtained to ten decimal places for integral values of t from 0 to 44; this 
series was completed by using Sheppard's tables, and the differences of the entire 
series up to and including the 4th differences were taken. Multiplying the latter 
by 108 and expressing the result in integers, we obtained weights with the help 
of which-and by using scheme (1)-the values of 104 A4yJ11 were obtained from 
the second basic series. 
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tions for the elucidation of the different aspects of the problem. We 
could not aspire to imitate nature in forming a set of weights; still, in 
the course of the work, we have come across an exceptionally curious 
circumstance. First, each multifold simple summation of n items at 
a time gives a set of weights which approaches the Gaussian curve 
as a limit. In the Appendix, Section 1, there is given the instance of a 
tenfold summation of three items at a time with the weights chosen 
absolutely at random for each successive summation. The ten con- 

rt 

?0.2 

-0.2 W 1 FW;F 
-0.6 - - 

t -2 0 2 4 6 8 10 12 14 16 18 20 

FIGURE 6.-oooo The correlational functions of Models I-IVc, and of the 
scheme of the crossing of the chance weights (Ak'(10)). 

Corresponding Gaussian curves and the reduced differences of the 
J ordinates of the Gaussian curve. 

secutive sets of weights are depicted in Figure 5. It is easily seen how 
they gradually become more and more like the Gaussian curve, and 
for the tenth summation the weights approach the Gaussian curve 
very closely. 

This is far from being a chance result. From further considerations 
(Appendix, Section 1) we find that we have here actually encountered 
a law which, under certain conditions, must necessarily realize itself 
in the chaos of random entanglements and crossings of endless num- 
bers of series of causes and consequences. The problem is specially 
important for the reason that the correlational function of a derived 
series is defined entirely by the respective weights-function. It is possi- 
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ble to prove (see Appendix, Sections 1, 2, and 3) that if the series of 
weights follows the Gaussian curve, the correlational function of the 
resulting consequence series is capable of being expressed by a similar 
curve with a greater or smaller degree of approximation. For the series 
of consequences proportionate to the increments of the cause-that is, 
the differences of order k of the series of causes-the correlational 
function can be represented by the series of the differences (of order 
2k) of the ordinates of the Gaussian curve. It could not be by chance 
that the correlational function of all of our models, with the exception 
of the most elementary one (Model I), belong to one of the two types 
mentioned (see Figure 6). No exception is found in the correlational 

TABLE 1 

Distance Correlation 
between coefficients with Ordinates of Differences 

terms random weights Gaussian curve 

t rt Rt rt -Rt 

0 1.000 1.000 0.000 
1 0.965 0.965 0.000 
2 0.868 0.866 +0.002 
3 0.727 0.723 +0.004 
4 0.567 0.562 +0.005 
5 0.410 0.407 +0.003 
6 0.275 0.274 +0.001 
7 0.171 0.171 0.000 
8 0.097 0.100 -0.003 
9 0.051 0.054 -0.003 

10 0.024 0.027 -0.003 
11 0.011 0.013 -0.002 
12 0.004 0.006 -0.002 
13 0.001 0.002 -0.001 
14 0.000 0.001 -0.001 

function for the series of consequences of the 10th order obtained in 
the course of the crossing of the random weights in the example men- 
tioned above. The values of these correlation coefficients (rt), together 
with the ordinates of the corresponding Gaussian curve (Rt), are given 
in Table 1 (for the calculation see Appendix, Section 2). 

III. THE UNDULATORY CHARACTER OF CHANCE SERIES; 

GRADUALITY AND FLUENCY AS TENDENCIES 

Our models, representing several sets of experiments, give an in- 
ductive proof of our first thesis, namely, that the summation of random 
causes may be the source of cyclic, or undulatory processes.'4 It is, however 

14 The definition of the business cycle as being a process (not necessarily 
periodic) characterized by successive rises and falls, is given by W. C. Mitchell 
in Introduction to W. L. Thorp, Business Annals, New York, 1926, pp. 32-33. 



EUGEN SLUTZKY 115 

not difficult to determine the reason why it must be so inevitably. We 
shall first observe a series of independent values of a random variable. 
If, for the sake of simplicity, we assume that the distribution of proba- 
bilities does not change, then, for the entire series, there will exist a 
certain horizontal level such that the probabilities of obtaining a value 
either above or below it would be equal. The probability that a value, 
which has just passed from the positive deviation region to the nega- 
tive, will remain below at the subsequent trial is :; the probability 
that it will remain below two times in succession is 1; three times 8; 
and so on. Thus the probability that the values will remain for a long 
time above the level or below the level is quite negligible. It is, there- 

TABLE 2 

Length of half-wave Actual frequency Theoretical frequency 

i nsi ni 

1 261 256 
2 137 128 
3 65 64 
4 29 32 
5 14 16 
6 4 8 
7 1 4 
8 and more 1 4 

Total 512 512 

fore, practically certain that, for a somewhat long series, the values 
will pass many times from the positive deviations to the negative and 
vice versa. Let us designate as a half-wave a portion of the series in 
which the deviation does not change sign. Thus, for 1000 numbers of 
the third basic series we find 540 half-waves (instead of the theoretically 
expected 500). Taking from this number the first 512 half-waves we 
find among them a number of half-waves of the length 1,2, etc. In 
Table 2 the actual (ni') and theoretical15 (ni) frequencies for half-waves 
of various lengths are shown. That the observed series is consistent 
with the theoretical series can be found by the calculation of the x2 
criterion of goodness of fit."6 

If a variable can have more than two values and if, in a certain inter- 
val of a more or less considerable length, it happens to remain above 

15 L. von Bortkiewicz, Die Iterationen, 1917, Formel 75, p. 99. 
1B We find, indeed, 

n(ni' -n)2 

x2= L = 7.78, 
ni 

the corresponding probability being P=0.35; see Tables for Statisticians and 
Biometricians, ed. by K. Pearson, Part I, Table XII. 
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(or below) its general level, then in that interval it will have a tempo- 
rary level about which it almost certainly will oscillate. Thus on the 
waves of one order there appear superimposed waves of another order. 

The unconnected random waves are usually called irregular zigzags. 
A correlation between the items of a series deprives the waves of this 
characteristic and introduces into their rising and falling movements 
an element of graduality. In order to make the reasoning more concrete, 
let us consider a series obtained from an incoherent series by means of 
a ten-item moving summation. Our Model I will be used as the exam- 
ple. Any items of this model separated from each other by more than 
9 intervals (as, for example, the values yo, Y10, Y20, ... ) are not corre- 
lated with each other and consequently form waves of the above con- 
sidered type, i.e., irregular zigzags. But if we consider the entire series, 
we shall certainly find gradual transitions from the maximum point of a 
wave to its minimum and vice versa, since the correlation between 
neighboring items of the series makes small differences between them 
more probable than large ones. This we find to be true for all of our 
models. 

We must distinguish between the graduality of the transitions and 
their fluency. We could speak about the absence of the latter property 
if a state of things existed where there would be an equal probability 
for either a rise or a fall after a rise as well as after a fall. If fluency were 
missing we should obtain waves covered by zigzags such as we find in 
Model I (see Figure 3). 

For example, we have for Model I, 

yo = 5 + XO + Xl + X2 + + X9, 

Y, = 5 + Xl + X2 + + X9 + X10, 

Y2 = 5 + X2 + + X9 + x1o + x11, 

from which we obtain 
Ayo =Yi - Yo = Xio - Xo 

y = Y2 - yl = Xll- X, 

* . . . . . . . . . . 

Thus we see that the adjacent first differences do not have any 
causes in common, and hence are not correlated. The same applies to 
differences which are further apart, with the exception of such as 

y1-yo=x1o-xo and y11-y10=x20-xio. The series of differences is al- 
most incoherent and hence the waves will be covered by chaotically 
irregular zigzags such as we find in Model I. 

Let us assume further that adjacent differences are positively cor- 
related. Then, in all probability, after a rise another rise will occur, 
after a fall a further fall; a steep rise will have the tendency to continue 
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with the same steepness, a moderate one with the same moderateness. 
So small sections of a wave will tend to be straight lines; and the greater 
the coefficient of correlation between adjacent differences the closer 
the sections approximate straight lines.'7 

Correlation between second differences plays an analogous role. The 
greater this correlation coefficient, the greater the tendency toward 
the preservation of the constancy of the second differences. Over more 
or less considerably long intervals a series with approximately constant 
second differences will tend to approximate a second-degree parabola 
as all "good" curves do. In Table 3 are given, for Models, I, II, and 
III, the values of the correlation coefficients between the adjacent 
items of the series (r1), between the adjacent first differences (r'tl)),and 
between the adjacent second differences (ri(2'2)). The coefficients were 
calculated by the formulas of the Appendix, Section 1. As we go from 
the first basic series to Model I and then to Models II and III, we find 
progressive changes in their graphic appearance (see Figures, 3, 2, 8, 
and 11 respectively). These changes are produced at first by the in- 
troduction and then by the growth of graduality and of fluency in the 
movements of the respective chance waves. The growth of the degree 
of correlation between items (or between their differences) as we go 
from the first basic series to Model I, etc. (see Table 3) corresponds to 
the changes in the graphic appearance of our series. 

TABLE 3 

Coefficient of correlation between: 

Model Terms First differences Second differences 

ri ri(il ,) ri(2,2) 

I 0.9 0.0 -0.5 
II 0.985 0.85 0.0 

I I I 0 .9975 0 0.9925 0 0.9876 

IV. EMPIRICAL EVIDENCE OF THE APPROXIMATE 

REGULARITY OF CHANCE WAVES 

Our first thesis, that is, the demonstration of the possibility of the 
appearance of undulatory processes of a more or less fluent character 
as the result of the summation of random causes, may be considered 

17 The term tendency is used here in a strict sense. To each equation of regres- 
sion (giving the value of the conditional mathematical expectation of a variable 
as a function of some other variable) there corresponds an approximate equation 
between the variables themselves. The closer to unity the absolute value of the 
coefficient of correlation lies, the greater is the probability that this functional 
relationship will be maintained within the limits of the desired accuracy; i.e., 
the stronger will be the tendency. 
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as practically proved. However, our second thesis, that is, the demon- 
stration of the approximate regularity of the waves, offers considerably 
greater difficulties. Again we shall begin with the inductive method. 

120 . A 
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has been passed through them, which, because of the small scale, seems 
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to be a comparatively fluent curve. One can distinguish on the curve 
waves of different orders-even down to insignificant zigzags, of which 
a number are not apparent on the graph because of their minuteness. 
The maxima and minima having been listed, together with the length 
of their half-waves and amplitudes, we have found that, since an em- 
pirically descriptive point of view, in its very nature, permits only 
approximate solutions,"8 it was legitimate to draw a boundary between 
waves and ripples: maxima and minima with amplitudes of ten units 
or less being discarded as ripples. The remaining maxima and minima 
are indicated by arrows in Figure 2. The distribution of the lengths 
of the 83 half-waves for Model II is given graphically in Figure 
7 (B1). Figure 7 includes the distribution (A) of the lengths of 93 
cycles of economic life for 12 countries outside of England, as given 
by Mitchell.19 The coefficient of variation for the latter is 47.0%20 as 
compared to 48.6% for Model II. Thus we find variation of the same 
degree in the two distributions. The distributions for Models IVa, lVb, 
and IVc are also shown in Figure 7. The average lengths of waves are 
9.23, 7.36 and 6.15, while the coefficients of variation are 38.2%, 32.7% 
and 29.2% respectively. In general appearance these last three dis- 
tributions are similar to the first two, although the last three have 
less variation, in spite of the fact that for Models IV, a, b, and c, the 
data are taken without discarding the ripples. Our models being based 
on some a priori schemes, it appears quite likely that some day it will 
be possible to calculate the mathematical expectation and variability of 
the distances between maxima and minima. In this respect, therefore, 
the chance waves in coherent series must be subject to some kind of 
regularity, the regularity of this type being observed even in the chaot- 
ic zigzags of purely random series.2' 

We are interested, however, in a different aspect of the problem. The 
attempt of Mitchell to deny the periodicity of business cycles is a result 
of his tendency to stick to a purely descriptive point of view. The 
means of description which he uses and which we tried to imitate for 
our models are far too crude. If we try to apply the same method to a 
sum of two or three sinusoids the result would be approximately the 
same. Those investigators of economic life are right who believe in 
their acumen and instinct and subscribe to at least an approximate 
correctness in the concept of the periodicity of business cycles. Let us 

18 Cf. E. Husserl, Ideen zu einer reinen Phanomenologie und phanomenologischen 
Philosophie, Halle a.d.S., 1922, ? 74: Deskriptive und exakte Wissenschaften, p. 
138-139. 

19 W. L. Thorp, Business Annals, Introduction by W. C. Mitchell, p. 58. 
20 Ibid. 
21 Cf. L. von. Bortkiewicz, Die Iterationen, 1917. 
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again examine Model II (Figure 2). In many places there are, appar- 
ently, large waves with massive outlines as well as smaller waves 
lying, as it were, over them; sometimes these are detached from them, 
sometimes they are almost completely merged into them. For example, 
at the beginning of Figure 2, three waves of nearly equal length are 
apparent, that is, from the first to the third minimum, from the third 
to the fifth, and from the fifth to the sixth. Upon these waves smaller 
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FIGuRE 8.-o-o-o The first 120 even terms of Model II. - Sum of the 
first five harmonics of Fourier series: y = 518.14 -20.98 cos (27rt/240) +50.02 sin 
(27rt/240) +17.30 cos (27rt/120) -3.16 sin (27rt/120) -10.93 cos (27rt/80) +35.66 
sin (27rt/80)+17.18 cos (27rt/60) -21.92 sin (2irt/60) -38.53 cos (27rt/48) -3.65 
sin (27rt/48). 
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FIGURE 9.-o-o-o The deviations of Model II from the sum of the first five 
harmonics of Fourier series. 6th sinusoid: y = 12.98 cos (27rt/40) -51.50 
sin (2irt/40). 

ones can be seen having also approximately equal dimensions. A careful 
examination of the graphs of our models will disclose to the reader a 
number of places where the approximate equality of the length of the 
waves is readily apparent. If we had a much shorter series, such as a 
series offered by the ordinary statistics of economic life with its small 
number of waves, we should be tempted to consider the sequence as 
strictly periodic, that is, as composed of a few regular harmonic fluc- 
tuations complicated by some insignificant casual fluctuations. For 
instance, let us consider two sections of Model II, lying one directly 
above the other in Figure 2, namely, the section from item 100 to 
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item 250 and the one from 600 to 750. The similarity between the waves 
in these sections is apparent. 

The accuracy of the above deduction is limited by the imperfection 
of a visual impression. To eliminate this shortcoming, let us analyze 
one or two sections of our models harmonically by means of Fourier's 
analysis. This has been done for a section of 240 points of Model II 
and the 360 points of Model III. Because of the great fluency of these 
series it was sufficient to use only the even-numbered ordinates (i.e., 0, 
2, . * * 238, and 0, 2, * * * 358, respectively), thus saving some computa- 
tion. The results for the 120 points of Model II are shown in Figures 8, 
9 and 10, those for the 180 points of Model III in Figures 11 and 12. 
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FIG'URE 10.-o-o-o The deviations of Model II from the sum of six harmonics. 

A ~B: y= 71 sin-2r(t + 18) sin-2r(t - 24). 264 18 

C ~D: Y~85 sin - r(t - 100) sin -7-(t - 122*) 288 14-a 

First let us consider Model II. In Figure 8 the sum of the first five 
sinusoids of the Fourier series are shown, while in Figure 9 the devia- 
tions from that sum are shown together with the sixth sinusoid. It is 
known, of course, that practically any given curve can be represented 
by a sum of a series of sinusoids provided a large enough number of 
terms is taken. It is not for every empirical series, however, that we can 
obtain such a significant correspondence and such a sharply expressed 
periodicity with a comparatively small number of harmonics. The 
approximately regular waves which were apparent even in the crude 
series are much more distinct now when they are isolated by deducting 
the sum of the first five harmonics. Of course, we cannot assert that the 
rest of Model II would follow the same periodicity, but, for our pur- 
poses, it is sufficient that successive waves should maintain an approxi- 
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mate equality of length for six periods. This hardly can be considered 
to be a chance occurrence; the explanation of such an effect must be 
found in the mechanism of the connection of the random values. 

The deviations from the sum of six harmonics are plotted in Figure 
10 together with the corresponding fluent curves. These curves are 
obtained as interference waves of two sinusoids with equal amplitudes 
and approximately equal periods. In other words, such a curve can be 
represented as the product of two sinusoids or as a sinusoid with an 
amplitude also changing along a sinusoid. These bending sinusoids 
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FIGURE 11.-o-o-o The first 180 even terms of Model III. ----Y = 554.8 
+31.79 cos (27rt/360)+3.40 sin (27rt/360). - - = - yi =YI-58.82 cos (27rt/180) 
+46.63 sin (27rt/180). YIII =YII-75.36 cos (27rt/120) +0.61 sin (27rt/120). 

separate on the graph the regions which place our empirical series in a 
definite regime.22 Over a large part of the first region the regime is 
maintained for three or four periods with a correspondence that is 
much greater than could reasonably be expected between an analytical 
curve and a random series. At the beginning and end of a region the 
regime is broken. The point where a bending sinusoid cuts the axis of 
abscissas is the critical point. After this point a regime is replaced by 
another regime of the same type, but having different parameters. 
Throughout the greater part of the second region, as in the first, the 
regime is quite well sustained.23 

22 The term regime has been borrowed for the purposes of theoretical statistics 
from hydrography by N. S. Tchetverikov. See his work: "Relation of the Price 
of Wheat to the Size of the Crop," The Problems of Economic Conditions, Vol. 1, 
Issue 1, Moscow, 1925, p. 83. 

23 The parameters of a regime, 
y = A sin [(3600/L) (x - a) ] sin [(360?/l) (x - b) ] 

are easy to determine by means of graphical construction after a few trials. It 
is also possible to make corrections, using the method of least squares, but in 
our case we did not think it necessary. 
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If a result like the foregoing is not due to chance, a much better 
proof could be expected from an analysis of Model III for which the 
correlation between the elements is greater than for Model II. In Fig- 
ure 11 the even-numbered points from 0 to 358 of Model III are plotted 
together with the first harmonic of the Fourier series, the sum of 
the first two, and the sum of the first three sinusoids. Instead of the 
six sinusoids needed for Model II, only three are here necessary 
for our purposes. The deviations from these are shown in Figure 12. 
Three regions are apparent with a change of regimes at the critical 
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FIGURE 12.-oooo Deviations of Model III from the sum of the first three 
harmonics. A B-----C, Regime I: Y= 136 sin [2ir(t - 167)/960] sin [2ir(t - 39) 
/64]. D-.-.-E, Regime II': yI'=58 sin [2Tr(t-94)/360] sin [27r(t-98)/36]. 
E -F ....G, Regime II": yrr"=58 sin [27r(t-94)/360] sin [2ir(t-170)/54.4]. 
H---K - L, Regime III: yrrr=182 sin [2ir(t-222)/276] sin [2r(t-250.6) 
/59.6]. B--E; y=yI+yrr'. F--K: y=yII"+yII. 

points. In addition we find one more regularity: to the overlapping 
parts of the said regions corresponds every time the partial superposi- 
tion of the regimes, i.e.,the algebraical addition of the respective curves. 

Let us try now to summarize our observations in the following ten- 
tative and hypothetical manner: 

The summation of random causes generates a cyclical series which 
tends to imitate for a number of cycles a harmonic series of a relatively 
small number of sine curves. After a more or less considerable number of 
periods every regime becomes disarranged, the transition to another regime 
occurring sometimes rather gradually, sometimes more or less abruptly, 
around certain critical points. 
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V. THE TENDENCY TO SINUSOIDAL FORM 

In addition to the tendencies towards graduality and fluency (that 
is towards linear and parabolic forms for small sections) we find a third 
tendency, namely, the tendency toward a sinusoidal form. 

Let yi, Yi+l, Yi+2, be the ordinates of a sinusoid. Then it is always 
true that 

(2) A2yi =-ay;+i, 

where A2yi = (Yi+2- Yi+l) - (Yi+1 -yi), that is, the ith second difference 
of the series. 

Conversely, it can easily be proved that the function defined by an 
equation of the form (2) in case 0 <a <4 must be a 'sinusoid.24 Now, if 
there is a high correlation between the second differences (A2yi) and 
the ordinates (yi+i) of a series, then equation (2) will be approximately 
true and there will exist a tendency toward a sinusoidal form in the 
series. The closer the correlation coefficient between A2yi and yi+i, de- 
noted by us by rl(2,0), is to - 1, the more pronounced (or strong) is the 
tendency to a sinusoidal form. 

A tendency toward either linear or parabolic forms cannot appear 
in a very large section of a coherent series because it would disrupt its 
cyclic character. The accumulation of deviations necessarily destroys 
every linear or parabolic regime even though the respective correlations 
are very high. After a regime is disrupted the new section will have a 
new, let us say a parabolic, regime (i.e., a regime of parabolas with 
different parameters). This process continues throughout the entire 
series, so that each coherent series of the type considered here is 
patched together out of a number of parabolas with variable parameters 
whose variations generally cannot be foreseen. 

A sinusoidal regime is also bound to disrupt gradually, this being a 
property which distinguishes every tendency from an exact law. But 
under favorable conditions the sinusoidal tendency can be maintained 
over a number of waves without contradicting the basic property of a 
coherent series. In order to obtain a result of this kind it is necessary 
that the respective correlations be sufficiently high. But, as a matter of 
fact, rl(2,0) for Model II is approximately the same as for Model I 
(-0.315 and -0.316), while Model III with its great smoothness has 
an rl(2,0) less than that of Model IVa (-0.578 as compared to -0.599). 
It seems, however, to be very probable that this criterion is insufficient 
just because we have to deal here not with one sinusoid but with a 
whole series of sinusoids having different periods. Equation (2), of 

24 The condition 0 <a <4 is always satisfied in our case since a =2 (1 -ri) 
where ri is a correlation coefficient between the adjacent terms of the series (be- 
tween yi and yi+i). See Appendix, Section 4. 
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course, is true only for a single sinusoid and cannot be applied to a sum 
of sinusoids. 

To find an instance more apt to illustrate the tendency in question, 
let us consider the differences of various orders for Model III, the series 
best adapted for such purposes. If a curve is represented by a sum of 
sinusoids, then the differences of all orders are sums of sinusoids having 
waves of the same periods as the curve. The higher the order of the 
difference, the more pronounced are the shorter periods, since the dif- 
ferencing process weights the shorter periods as against the longer ones. 
Thus, by applying the formulas of the Appendix, Section 1, we find 
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or B, respectively, in Figure 14) as the apex of a second-degree parabola 
which passesthrough the threehighest (or the three lowest) points of the 
wave. Then, let us draw a horizontal line bisecting the distance between 
the highest and lowest points of the wave. Further, let us denote the 
point where this horizontal line crosses the straight line joining the 
two points between which the horizontal line passes as C. This point 
divides AB into two quarter-waves, AC and BC. For each of these, let 
us make the following construction: Dividing the base line DC (D 
having the same abscissa as A) into six equal parts, we obtain seven 
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points corresponding to 00, 150, 300, 450, 600, 750, and 900. At the five 
central points construct perpendiculars and extend them to the parab- 
ola fitted to the three empirical points (interpolated according to 
Newton's formula). These perpendiculars are the ordinates of an em- 
pirical half-wave and, if we divide through by the maximum ordinate 
AD, we obtain the relative ordinates y,5 Y30, Y45, y60, and Y75. If our 
wave is a sinusoid, these relative ordinates will equal the sines of 150, 
300, 450, 600, and 750, respectively. The empirical relative ordinates for 
the 12 quarter-waves of A4 YH, are shown by black dots around the 
regular sinusoid of Figure 13, while the relative ordinates of the first, 
second, etc., quarters of every empirical wave are shown on the first, 

A 

750 600 450 300 150 

FIGURE 14.-A Scheme for Calculation of the Relative Ordinates. 

second, etc., quarters of the sinusoid. The points can hardly be distin- 
guished from the curave. Thus the tendency to a sinusoidal form is 
shown rather distinctly. If we compute the arithmetic averages of the 
relative ordinates having the same abscissa (e.g., 15 = l/12(y,5(l)+y15(2) 
+ . .. +y5(12)) and compare them with the corresponding sines (e.g., 
sin 150), we shall see that the deviations are less than 2 in the second 
decimal place (see Table 4). The agreement is, therefore, close enough 

TABLE 4 

Phase-angle 
150 300 450 600 750 

0.258 0.496 0.703 0.863 0.964 

Sin a 0.259 0.500 0.707 0.866 0.966 

Deviations -0.001 -0.004 -0.004 -0.003 -0.002 
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to be considered as the clear manifestation of the tendency toward a 
sinusoidal form, and thus displays once more the ability of chance 
waves to simulate regular harmonic oscillations. 

VI. ON THE PSEUDO-PERIODIC CHARACTER OF THE EMPIRICAL 

CORRELATIONAL FUNCTION25 

As a further illustration of the sinusoidal tendency, I shall consider 
here a chance series satisfying, to a rather high degree of approxima- 
tion, the equation 

(3) A4Z, - pA2Z,?i -qZi+2 = 0, 

corresponding, if treated as a precise one, to the sum of two sinusoids. 
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FIGURE 15.- o o o o The reduced empirical correlation function of Model 
IVc. Sum of two sinusoids, separately for each of three intervals...... 
Sum of three sinusoids. 

Let us denote the series in question by the symbols 

P 11, P 12, * , P64, 

the values of p't (see Figure 15) being given by the equation 

(4) 1'2= 
8 - Pt 

where Pt is the empirical correlation coefficient between the terms (yi, 
yi+t) of the series made up by 128 items of Model IVc. As the values 
of Pt have been calculated from very different numbers of items vary- 
ing from 117 (that is, 128-11) to 64 (that is, 128-64), the reduction 

25 Eugen Slutzky, "On the Standard Error of the Correlation Coefficient in 
the Case of Homogenous Coherent Chance Series" (in Russian, with English 
summary). Transactions of the Conjuncture Institute, Vol. 2, 1929, pp. 94-98, 
154. 
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by (4) has been thought useful in order to bring the respective standard 
deviations to approximate equality. 

Before going further, the following remarks will be made. Let yo, 
y,* be a stationary chance series. This implies that the mathemat- 
ical expectation, E(y,), is a constant, that the standard deviation, a-, 
is a constant, and that the correlation coefficient, rt, between yi and 
yi+t, is a function of t only. Then, putting, without loss of generality, 
E(y,) = 0, we shall have (,2 = E(y,2) and rt = E(yiyi+t)/a-2. This being the 
theoretical correlation coefficient, let us suppose that rt =0 if t > C. 
Then the correlation coefficient, r'U, between the empirical correlation 
coefficients, Pt and Pt+u, will be given by the equation 

Ertrt+u 

(5) r u = r(pt, Pt+u) = 

Ert2 

this formula being approximately correct if it be supposed (1) that Pt 
and Pt+u are calculated from the same number of values, n; (2) that n 
is sufficiently large; and (3) that t > 2c, n-t > , and u > 0.21 

Let us suppose now that the values of r'u calculated from (5) may 
be held to be approximately true for the series of the reduced correla- 
tion coefficients (P'1l, p',12 ... P'64) defined above. Then we have to 
consider the following problem: 

The series given (p't) being a chance series, there can exist no pe- 
riodicity in the strict sense of the word. Its cyclical character being, 
however, obvious (see Figure 15), it may be asked whether the law of 
its composition from simple harmonics cannot be detected when its 
correlational function is known. 

Let us try to solve this problem to the first approximation by sup- 
posing that our series can be duly approximated by the sum of two 
sinusoids with constant periods and varying amplitudes and phases. 
To this end, let us find the parameters of the regression equation which 
can be written in the form 

(6) A4PIu = pA2p'u+l + qP'u+2 + e, 

e being the "error," and p and q being determined by the method of 
least squares. If we denote the correlation coefficients between the 
pairs of values 

(A4p'u, A2p'u+1)) (A4pIu, PIu+2), (A2p'u+?, P u+2), 

by r12, r13, r23 respectively, then, using the formulae (43)-(44) (Ap- 
pendix, Section 1), we obtain 

26 Cf. Slutzky, loc. cit. in note 25, pp. 91-94. 
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A6r'W-3 A4r2 A2r'_ 
(7) r12= v_;_1_3_ , ; r23= ___ 

A8' r VA4r'_ 

where r'-. (= r'.) is the correlation coefficient defined by the equation 
(5). These values are 

r _ = r4 = -0.761,874,30, 

r _ = r'3 = -0.618,465,96, 

r -2 = = -0.013,793,10, 

r' = r= - 0.689,655,17, 

whence, using (7), 

r12 = 0.945,847, r13 = 0.760,844, r23 - 0.919,999. 

Then, by the well-known formula of linear regression, we obtain 

p =-1.419,386, q -- 0.425,828, 

the multiple correlation coefficient, between LA4PU on the one hand, and 
A2Pu+1 and Pu+2 on the other, being rl.23 = 0.986. The correlation is thus 
very high and so it is quite reasonable to omit e in (6) and to treat the 
resulting approximate equation according to the rules of the calculus 
of finite differences. We find thus that the solution of this equation is 
the sum of two sinusoids with the periods 

Li = 9.40, L2 = 6.04. 

Let us, then, divide our series (Plll) P/12, . . . P'64) into three parts, 
of 18 items each, and let us find, for each part separately, two sinus- 
oids with the periods L1 = 9, L2 = 6, these being the whole numbers near- 
est to the theoretical values just obtained. We find the results given 
in Table 5. 

TABLE 5 

Part I Part I I Part III 

L1=9 L2=6 L1=9 L2=6 L1=9 L2=6 

Amplitude 0.19790 0.07820 0.12614 0.12527 0.29123 0.13340 
Phase 231037' 52039 21802' 295?21 270052' 2033 

A glance at Fig. 15 shows that the theoretical curves fit the empirical 
points very satisfactorily and it seems fairly certain that, if we had 
included one or two sinusoids more, we could have obtained a quite 
satisfactory fit, even if treating our empirical series as a whole. This 
can be proved by the fact that the sum of three sinusoids 

z = 0. 1893 sin [(3600/8.80)t - 4703'] 

+ 0.1000 sin [(3600/7.14)t + 168024'] 

+ 0.0794 sin [(3600/5.87)t - 7603'], 



130 ECONOMETRICA 

though found by rather a rough graphical estimate, fits our empirical 
curve in a fairly satisfactory manner.27 

VII. THE LAW OF THE SINUSOIDAL LIMIT 

Many tendencies dealt with rather empirically in the preceding dis- 
cussion will be more clearly understood, and their significance more 
fully appreciated, if we take into consideration the following proposi- 
tions.28 

THEOREM A: (The Law of the Sinusoidal Limit) 

Let yi, Y2, be a chance series fulfilling the conditions, 

E(yi) = 0, E(y,2) = (2 = f(n), 

E(yiyi+t) 
2 rt = (t, n), 

E (y,2) 

where n is a parameter specifying the series as a whole, and f(n) and 
0 (t, n) are independent of i. If, furthermore, the correlation coefficient, ri, 
between y, and yi+1, satisfies the condition 

I ri I _ c < 1, (n oo), 
and the correlation coefficient between A2yj and yi+1, that is, P1, is such that 

lim P1 = -1, (n oo), 

then (1) e and -q being taken arbitrarily small and s arbitrarily large, there 
will exist a number, no, such that for every n >no, the probability, that the 
absolute values of the deviations of y,, yi+?, Y . . yi+ from a certain sinusoid 
will not exceed eo, will be > 1 - -; (2) the period of this sinusoid will be 
determined by the equation 

cos (2X/L) =r; 

(3) the number of the periods in the interval (i, i+s) will be arbitrarily 
large provided s and n be taken large enough. 

This proposition (for its proof see Appendix, Section 4) would be of 
no interest could we not give at least a single instance of a chance series 
satisfying the conditions of Theorem A. This is done by 

27 The above illustration seems to throw some light on the difficulties connect- 
ed with the idea of a correlation periodogram. Cf. Dinsmore Alter, "A Group 
or Correlation Periodogram," etc., Monthly Weather Review, Vol. 55, No. 6, June, 
1927, pp. 263-266; Sir Gilbert Walker, "On Periodicity in Series of Related 
Terms," Proc. Royal Soc., Ser. A, Vol. 131, No. A 818, 1931, pp. 518-532. 

28 E. Slutsky, "Sur un th6or6me limite relatif aux s6ries des quantit6s 6ven- 
tuelles," Comptes Rendus, Paris, t. 185, seance du 4 Juli, 1927, p. 169. 
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THEOREM B: Let x1, X2,* be a random series fulfilling the condi- 
tions 

E(xi) = 0, E(x,2) = u,,2 = const., E(xixi) = 0, (i F j). 

Now, if we put 
X =(1) = Xi + X- X (2) = X-(1) + x- (1) 

X2,(n) = X,(n-1) + xi*(n-1) 
and 

y, = AmX,(n) 

then the series yi, y2, * * * will tend to obey the law of the sinusoidal limit, 
provided m and n be increasing indefinitely and m/n = constant (for the 
proof see Appendix, Section 4). 

Both propositions can be generalized to the case of a chance series 
practically coinciding, not with one sinusoid, but with the sum of a 
certain number of sinusoids.29 In every case, however, the practical 
coincidence (and it is a very essential character of the series under 
consideration) does not extend itself to the series as a whole, the re- 
spective sinusoids of closest fit being different for different partial 
series. This is plainly evident for the chance series of Theorem B, for, 
s being arbitrarily large and n and m being sufficiently large, the values 
yj and yi+t will be wholly independent of each other as soon as t>m 
+n+1, whence it follows that the phases and the amplitudes of the 
sinusoids practically coincident with the partial series, yi, yi+i, 
yi+s, and yi+t+s, yi+t+s+l, * y+t+2s respectively, will also be inde- 
pendent of each other provided t > m+n-n+ 1. 

The following considerations will show us the same problem from a 
somewhat different standpoint. Let us suppose a certain mechanism is 
being subjected to damped vibrations of a periodic character and to 
casual disturbances accumulating energy just sufficient to counter- 
balance the damping.30 Then the movement of the system could be 
regarded as consisting of the two parts: of the vibrations determined 
by the initial conditions at some given moment, and of the vibrations 
generated by the disturbances that have occurred since. As soon as the 
first part has been nearly extinguished by the damping process after 
due lapse of time, the actual vibrations will be reduced practically to 
the second part, that is, to the accumulated consequences of the chance 

29 V. Romanovsky, "Sur la loi sinusoidale limite," Rend. d. Circ. mat. di 
Palermo, Vol. 56, Fasc. 1, 1932, pp. 82-111; V. Romanovsky, "Sur une generali- 
sation de la loi sinusoidal limite," Rend d. Circ. mat. di Palermo, Vol. 57, Fasc. 1, 
pp. 130-136; cf. Sir Gilbert Walker, op. cit., in note 27. 

30 Cf. G. Udney Yule, "On a Method of Investigating Periodicities in Dis- 
turbed Series with Special Reference to Wolfer's Sunspot Numbers," Phil. 
Trans. Roy. Soc. of London, Ser. A. Vol. 226, 1927, pp. 267-298. 
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causes. The latter, after a due time, being again reduced to a value 
not different practically from zero, the vibrations will consist of the 
disturbances accumulated during the second internal of time and so on. 
It is evident that the vibrations ultimately will have the character of 
a chance function, the described process being a particular instance of 
the summation of random causes. Should the disturbances be small 
enough, there would exist an arbitrarily large, but finite, number, Lo) 
such that the resulting process would be practically coincident, in 
every interval of the length, L < Lo, with a certain periodic (or nearly 
periodic) function, obeying thus the law of the sinusoidal limit. 

Analogous considerations may be applied to the motion of planet- 
ary, or star systems, the innumerable cosmic influences being consid- 
ered as casual disturbances. The paths of the planets, if regarded during 
billions of years, should be considered, therefore, as chance functions, 
but if we do not wish to go beyond thousands of years their approxi- 
mate representation must be taken as not casual. 

The chance functions of the type just considered appearing on the 
one end of the scale, and the random functions on the other, there 
evidently must exist all possible intermediate gradations between these 
extremes. The ability of the coherent chance series to simulate the 
periodic, or the nearly periodic, functions, seems thus to be definitely 
demonstrated. 

It remains for us to try to clear up theoretically the remarkable 
property of some specimens of chance series, which do not belong to 
the extreme classes of their type, of being approximately representable 
by a small number of sinusoids, over a shorter or longer interval. 

It is well known that every empirical series consisting of a finite 
number of terms (N = 2n or 2n+ 1) can be represented precisely by a 
finite Fourier series, that is by the sum of a finite number (n) of sinu- 
soids. Further, it is plainly evident, the series under consideration being 
chance series and the coefficients of the Fourier expansion, 

n n 

Yt = Ao 
+ EAk cOs (27rkt/N) + E Bk sin (27rkt/N), 

1 1 

that is, the values Ao, A1, An, and Bo, B1, * * Bn, being linear 
functions of yi, Y2, yn, that the variables Ak and Bk will also be 
chance variables. Their mathematical expectations, standard devia- 
tions, and the correlation coefficients between them can be easily 
obtained." Denoting by Rk2 the intensity of the kth harmonic, that is, 

81 E. Slutsky, "Alcuni applicazioni di coefficienti di Fourier al analizo di 
sequenze eventuali coherenti stazionarii," Giorn. d. Istituto Italiano degli At- 
tuari, Vol. 5, No. 4, 1934; see also E. Slutsky, "Sur l'extension de la theorie de 
periodogrammes aux suites des quantit6s dependentes." Compte Rendus, t. 189, 
seance du 4 novembre, 1929, p. 722. 
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the square of its amplitude, we shall have 

Rk2= Ak2 + Bk2 

and 

E(Rk2) = (4 w2/N) [1 + 2 re cos (2rkt/N)] 

(8) N-1 

- (8a,,2/N2) E trt cos (27rkt/N), 
1 

whence, for the case of a random series, we obtain at once the formula 
of Schuster, 

(9) E(Rk2) = 40rY2/N, 

the probability distribution being the same in both cases, 

(10) P(Rk2 > Z2) = exp [- Z2/E(Rk2) ]. 

Let us suppose the m intensities happening to have the largest values 
in some given case are those with the indices: a, ,B, * * * ,x and let 

2(Ra2 + R62 + . + RA2) = p82, 

82 being the square of the empirical standard deviation and p the co- 
efficient measuring the degree of approximation reached in the given 
case by means of m harmonics. By taking account of (8), (9), and (10), 
we see at once that, in the case of a random series, the indices a, , 
are able to assume any values with equal probability but that in the 
case of a coherent series those having the largest values of E(Rk2) 
will be the most probable. As half of the sum of the intensities is equal 
to the square of the empirical standard deviation (Parceval's theorem), 
it is but natural that the coherent chance series, in many cases at least, 
may be represented-the degree of approximation being the same-by 
a smaller number of harmonics than the random series. 

It can be proved further (under suppositions of a not very restrictive 
character) that the correlation coefficients between the intensities 
belonging to the same interval, as well as between those belonging to 
the adjacent intervals, are quantities of the order 1/N2, and that the 
standard deviation of the intensity, UR2, tends to be equal to its prob- 
able value, E(Rk?2). Whence it is evident that the indices of the har- 
monics which happen to be the most suited for the representation of 
the series in a certain interval must also be practically independent of 
the indices of the "best" harmonics in adjacent intervals, the length of 
these intervals being sufficiently large. The larger the probable value 
of the intensity the larger also must be the extent of its casual varia- 
tion. These are properties quite consistent with a considerable degree 
of regularity-as well as with the abrupt changes of the "regimes" de- 
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termined by studying the empirical series dealt with in the foregoing 
pages. 

APPENDIX 

MATHEMATICAL NOTES OF THE THEORY OF RANDOM WAVES 

1. Let xo, Xi, . xi, be a random series, that is, a series of 
chance values independent of each other. Let this be our basic series 
and let it be considered as a model of incoherent series of random causes. 
Denoting by the symbol E the mathematical expectation, let us sup- 
pose that 

(1) E(xi) = 0, E(xi2) = q;2 = const.; E(xixj) = 0, (i ij). 

From the basic incoherent series of causes let us construct a coherent 
series of "consequences," Yij2-, Yi-1, Yi, , by the scheme 

n-1 

(2) Yi= E Ak Xi-7k 
kc=O 

where the quantities Ak are constants.A2 Then, by using (1) and (2), it 
can easily be shown that 

(3) E(yi) = 0, 
n-1 

(4) E(y,2) = aV2 = (.2 E Ak2, 
k=O 

(n-i)-t 

(5) E(yiyi+t) = ax2 E AkAk+t. 
k=O 

Since equations (4) and (5) do not depend on i, the coefficient of 
correlation between yi and yi-t, that is, rt, is also independent of i, and 
we have 

(n-1 )-t 

EAkAk+t 

(6) rt 
k=O 

n-1 
E Ak2 
k=O 

from which it immediately follows that 

(7) ro = 1; rt = r-t; rt = O (t _ n). 

The process of moving summation can be repeated. As before, let us 
take * Xi_2, Xi-l, xi * as the basic series underlying the conditions 

82 Cf. Prof. Birger Meidell's valuable investigation of the analogous cumula- 
tive processes in his paper, "tUber periodische und angeniiherte Beharrungs- 
zustiinde," Skandinavi8k Aktuarietid8krift, 1926, p. 172. 
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(1). Then on performing an s-fold moving summation we obtain the 
following successive consequence series: 

n-1 n-I 

Xi(l) = ak(')Xi-k; 
X i(2) = ak(2)Xi-k(1); 

(8) k=O k=O 

Xi(8) = E ak (8)Xik( 1) . 
k=O 

After the s-fold summation we have an expression of type (2) with 
yi=Xi('0. Hence, if we take n=2 and ak() = l, it can easily be shown 
that 

( 8) 
(9) yi = Xi CkXi-k 

k=O 
If we put 

(10) +(t) = _exp (- 4t2), 

we can, by the use of well-known transformations, obtain the approxi- 
mate expression (which we write for an even s) 

(11) yi = DZ Xi-k ck()O 

D being a coefficient, the value of which need not concern us here. 
It is very remarkable that a similar result will always be obtained 

for s sufficiently great, whatever be the weights used, provided it is 
supposed (1) that the weights are not negative, (2) that they remain 
constant at every given stage of the process, and (3) that the summa- 
tion does not tend to degenerate into a mere repetition of the same 
values, which would be the case should all k(8) but one tend to approach 
0; (the sum of the weights is supposed, without loss of generality, to 
be constant). 

To prove this, let us remark first that the result of the s-fold summa- 
tion given by (8) can evidently be obtained by a similar s-fold summa- 
tion with the weights 

poW ) pl(i . . . y Pn-1 (j) (j = 1, 2 . . . , s), 
where 

Pk = - m = M E ak ( 
Mi k50 

if we multiply the resulting weights by the proportionality factor 
Ml M2 .... Min8. 

Now to prove our proposition we shall use the following analogy 
(kindly suggested to the author by Prof. A. Khinchin). 
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Let zi, z2, z 8 be a set of random variables whose possible values 
are 0, 1, 2, * , n-1, the respective probabilities being po(i), p1(i), 
* Pn- 1) (j= 1, 2, s). Then it is easy to see that the probability 

of the equation 

(12) k = Zl + Z2 + + Z. 

must be equal to the coefficient of xk in the expansion of 
8 

(13) fJ (Po(i) + PlWix + p2 (j)x2 + + pn-1 (i)xn-1). 
j== 

On the other hand, it can be proved that the same coefficient, multiplied 
by ml .M2 in mm 8, will be equal to the coefficient Ak in the equation 
(2) obtained by an s-fold summation according to the scheme (8) with 
the weights 

mnpo(i), mpi), * ..., mpn_l(i), (j = 1, 2, , s). 

This is easily seen for s = 2 and the result can be generalized by mathe- 
matical induction from s to s +1. 

This analogy leads us to the following considerations. Let us put 

n-1 

ai=E(zj) = EkPk(i), 
k=O 

n-1 

(14) bj = E[(zj- a,)2] = Z (k -a,)2Pk 

k=O 

n-1 

cj = E [I zi - af] = E I k - ai fpk(i), (g > 2). 
k=O 

It is evident that bj=O only if every (k-ai)2pk(') =0 for k=0, 1, 2, 
* (n-1), and that this is possible only when every pk i) but one is 

equal to zero, the exceptional p being 1, in which case the values Xk(' 

are merely repetitions of the values Xk(j'l). 
This case being excluded, we shall have, on the average at least, 

a 

(15) (lls) Ebi > e > 0; 

whence 

(16) [ < ]2 [(-/s) E -0. 

[ E bi] 

But this is the well known Liapounoff's condition, under which the 
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probability distribution of the sum Zl+Z2+ +z*8, that is, the dis- 
tribution of the coefficients Ak, tends to the normal law.33 

Let us put, for instance, 

ao (i) = a = = a 1, (j = 1, 2, . . , s). 

Then we obtain 
n-1 

Mi = E ak(i) = n, 
k=O 

(17) m1m2 . . . m,= n, 

Pkic = l/n, 
for 

j = 1, 2, *.* *, s, and k = O, 1,* *,n-1; 
and 

n-1 

a1 = E(z1) = , kpk(i) = (n -1)/2 

(18) 
k=O 

bi = E[(z - a)2] = (1/n) {i k2 - na;2} = (n2 - 1)/12. 
k=O 

Whence 

(19) ko = E(k) = E[ zi = s(n -1)2 

and 

(20) Ok = Vsb1 = An2 1)/12. 

As s tends towardsoo, the value of Ak will thus approach a limit, which 
enables us to write, for s large but finite, the following approximate 
equations :4 

33 It is evident that, since Liapounoff's theorem is a proposition about the 
limit properties of certain integrals and not of the individual ordinates, the 
above demonstration must be interpreted also in the same sense. For many 
cases, however, for example, in the case of the illustration below, the additional 
conditions are satisfied under which the values of the variables Ak themselves 
are tending toward the ordinates of the Gaussian curve. 

Cf. Liapounoff, "Nouvelle forme du th6oreme sur la limite de probabilit6," 
Memoires de l'Academie de science de St.-Petersbourg, serie 8, Vol. 12, No. 5. 

R. von Mises, Vorlesungen aus dem Gebiete der Angewandten Mathematik, Bd. 
I-Wahrscheinlichkeitsrechnung und ihre Anwendungen, 1931, p. 200-212. 

R. von Mises, "Generalizzazione di un teorema sulla probabilita della somma 
di un numero illimitato di variabili casuali," Giornale dell'Istituto Italiano degli 
Attuari, Anno 5, N4, p. 483-495. 

34 This result coincides with that given in the first edition of this memoir in 
1927; it was supplied to the author by the courtesy of Prof. A. Khinchin who 
derived it by the application of the well-known Cauchy theorem to the evalua- 
tion of the coefficient of xk in the expansion of 

(1 + X + X2 + . . . + Xn-1)8. 

I am sorry that the calculations are too long to be reproduced here. 
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(21) Ak- 
a 

nBv/6v7rs(ln2 -1) exp { - 6(k - ko)2/s(n2 - 1)}. 

For the general case, we shall give here the following illustration, 
Let the weights for a set of successive summations be certain random 
numbers. For this purpose, let us choose consecutive groups of three 
numbers from the first basic series (Column 2, Table I, Appendix II). 
For the first moving summation the weights will be ao () = 5, a1(') = 4, 
a2M = 7; for the second ao(2) = 3, al(2) = 0, a2(2) = 3, etc. Performing the 
substitutions indicated by formula (8) we obtain the resulting weights 
corresponding to Ak of formula (2), Ak(') =ak(1), Ak (2) Ak(3)} * * * Ak(1) 

For each given s, we divide the weights by the largest Ak (' to obtain 
the relative weights, A' k(s) (see Table VIII, Appendix II, of the orig- 
inal paper, and Figure 5). The series of quantities A 'k('1) does not differ 
greatly from the Gaussian curve obtained by putting35 

(22) B'kY10) = 1004 exp { - [(k - 9.26)/2.67]2}. 

2. The coefficients of correlation between the terms of a coherent 
series are, in many cases, easy to obtain by using formula (6). For a 
simple moving summation of n equally weighted items at a time, we 
have Ao=A,= . . . =A 1= 1. It is easy to see that 

(23) frt=(n-I t I )/n, (jt ?n) 
(23) 

~~~~~rt=0, (tj ?n). 

From formulas (4), (5), (9) and the properties of Ck, we find for 
the s-fold moving summation of two terms, that is, (n = 2), that 

(24) uv2 = + u2[1 + (C0)2 + (CB)2 + ? +1] = 2C2s 

and 

(25) E(y,y,+t) = O_2[C8C8 + C8C?+S + * + C' C'] = af2C28. 

Hence 
2. 2 s(s -1) (s-t + 1) 

(26) rt CS_t18 -(s +1)(s +2) .(s +t) 

Consider another case. Let us form, from a basic series, a coherent 
series by the scheme: 

36 Let us pass a second degree parabola through Ao'(10), Al'(10), A2'('0); another 
through A2'(10), As'(1O), A41(10); etc. Denote the area of this figure by S, its maxi- 
mum ordinate by yo, and the abscissa bisecting the area by ko. Then, in the 
Gaussian equation 

B'k('?) = [S/V72ir] exp{ -i [(k - ko) /,]2 }, 
all of the parameters are known, since 

ko = 9.26, yo = S/lV2T7r = 1004, 
and hence 

= S/yoN/V2 = 2.67 
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2k, 

(27) Yi = DEXi_kf[(k - ko)/oK]I 
k=O 

where ?(t) is given by formula (10), D is a constant, and ko is a number 
large enough so that +$(t) can be neglected for I tf >ko/la. Then, from 
(6), the coefficient of correlation is 

2k -t 

L q[(k - ko)/a]j4[(k - ko + t)/aj 

(28) rt = 

E 1{[(k - ko)/a]1 2 
k=O 

If a is sufficiently large we can substitute integrals for the summa- 
tions in (28). Inserting z = k - ko, we then obtain the approximation for- 
mula 

+0 e F Z2+(Z+ t)i21 
f1exp _ [ _ dz 

00 a ff 

(29) rt +0 2 

J exp - a2 dz 

= exp (- t2/42) = OMt/ _. 

Inasmuch as Model III is formed by the scheme of formula (27), 
with D = 104, ko = 48, and a = 10, we can calculate the correlation func- 
tion by formula (29). The values for [4(t/x20)]/4(0), (t = 0, 1, 2, 
**. ), were calculated with the aid of Sheppard's tables.36 The symbol 

Rt(III), instead of rt(III), indicates that an approximate, and not an 
exact, formula was used in the calculation. 

Model IVa was obtained by a 12-fold moving summation of two 
items; therefore, its correlation function, rt(IVa), is obtained by using 
formula (26), which, if we consider (11), gives Rt(IVa) =(t/V'6)/4 (0). 
The discrepancies between the two results are rather small. The cor- 
respondence between rt(IVb) and Rt(Ivb) is somewhat less, as is also that 
between rt(Iv,) and Rt(Iv,). Both sets were computed by formula (45) 
(see next paragraph), but for the calculation of rt(IVb) and rt(Ivc) the 
actual values of rt(IVa) were used as the base, while for Rt(IVb) and 
Rt(Iv,) the approximate values of Rt(Iva), obtained by the Gaussian 
formula, were used. Even here the discrepancies are not very great 
when regarded from the same point of view (see Figure 6). 

38 Tables for Statisticians and Biometricians, ed. by K. Pearson, Cambridge, 
1914, Table II. 
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Finally, for Model II, corresponding to the scheme 
18 

(30) Yi = X(2)= Z Ak(2)x+ + 50, 
k=O 

(Ak(2) = 1, 2,2 . , 9, 10, 9,* , 2, 1), 

the coefficients of correlation can be obtained directly from formula 
(6). It is worth noting that, even in this case, a good approximation, 
Rt(r), can be obtained by the use of the Gaussian curve, the equation 
being 

(31) R(nI) = exp [- 2(t/5.954)2], 

where o=5.954 was obtained by equating the areas of the Gaussian 
curve and of the empirical curve, and the computations were carried 
through with the help of Simpson's rule (see Figure 6). 

A few more words may be said about the correlational function for 
the weights, A1'k'0), of our example of the crossing of random weights 
(see Section 2 of the text, Appendix, Section 1, and Figure 6). The 
exact values of the coefficients of correlation (rt) were found by formula 
(6), while approximate values (R,) were obtained from the equation 

(32) Rt = exp [- I(t/3.727)2], 

which was obtained in the same manner as was equation (31). Both the 
exact and approximate values are given in Table 1 (see also Figure 6). 
Also, let us note that, from the equation of the Gaussian curve which 
approximates the weights, A1(?10) (see formula (22) above), it is possi- 
ble to find an approximate expression for the coefficients of correlation 
by using formula (29). An expression analogous to (32) would be ob- 
tained, but instead of a = 3.727, we would have o- = 3.776. The correla- 
tion coefficients are only slightly less accurate than those found from 
formula (32), the deviations are all of one sign, and none is greater 
than 0.009. 

Let us make one more observation. If a chance variable yi =ui+v, 
where ui is a coherent series and vi is a random series, it is easy to 
show that 

(33) E(yiyi+t) = E(uiui+t), 

(34) (Ey 2) = o.u2 + (h,2 

(35) rv v r=j-- +tj =iY+ I+ (0-,,2/0U~2) 

where E(uj) and E(vi) are taken equal to zero. 
If rui ,u+ lies along the Gaussian curve, then ryi ,i++ will lie along 
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a similar curve with ordinates proportionally reduced, except that ro 
will, as formerly, equal unity; the chapeau de gendarme has taken on 
the spike of the budenovka (a Soviet military cap). It is to be expected 
that this figure and the analogous figures for the correlation function 
of the differences (formula (45) of the following paragraph) will be 
encountered in the investigation of empirical series.37 

3. Let us now investigate the differences of various orders of the 
series yi, i.e., Aayi, Afyi, and their coefficients of correlation.38 
As before, let 

(36) E(yi) = 0; E(yi2) = O-,2 = constant; E(y,y?+t)/of2 = rt, 

where rt is supposed to be independent of i. Let us introduce the nota- 
tion 

(37) rt(a fl) = rAayiAOy-+t (a > _) 

and, in particular, 

(38) rt(aa) = ra.iAeYi+t rt(a'o) = rAayi,Y;+t. 

By using the equality 
2a = a a a 

Ca_la+CC (39) Ck = Ca-kCo + Ca-(k-1)C ? * + a + CaCk, 

it can be shown that 

O-e. I [= E[(ZAayi)2 E[(CaYi+a - Ca-li+a-l + Ca-2i+a-2 

(40) * * * ? (- 1)aCy-)2]= (- 1)aA2ar o- 

From (40), by using the equality, 

(41) C~= C~k~ + a 
0 + C_C (41) Ca+'= Cc-kC', + Ca_k+lC+ + CaklC-1 + Ck, 

we obtain 

(42) E [ayjAMyj+t ] = (-) aAa+frt,a 2, (a _ 

and from this we have 

=a(f- 1)A2arma2r3t- 

In the same manner we obtain 

LI44) =r (a, V'-I)aAarta (44) rt( . = ( l)A/2ar_c 

37 Cf. Figure 19 of Yule, "Why Do We Sometimes Get Nonsense-Correla- 
tions- * * ," loc. cit., p. 43. 

38 Cf. 0. Anderson, "tiber ein neues Verfahren bei Anwendung der 'Variate- 
Difference' Methode," Biometrika, Vol. 15, 1923, pp. 142 ff. 
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and, as a special case of formula (43), we have 

i\2art.a 
(45) rt(a a = a 2) = 

A2ar, 

By this formula and by (26) the correlation coefficients for Models 
IVb and IVc have been computed. 

4. Let us now prove Theorem A (see Section VII above). The regres- 
sion coefficient of A\2yi on yi+i being 

E(A2y,.y,+,)/o2= -2(1 - r1), 

we obtain the approximate equation 

A2 yi- 2(1 - ri)yi+i. 

Whence 
a 

(46) yi+2 = 2rjyj+j -yi 

the errors of both equations being evidently identical. If we denote 
this error by a2 and put 32 = a2/0m, we may apply the well-known for- 
mula of correlation theory and thus obtain 

(47) E(Q22) = E(A2y,)(1 - p12)/o_2 = (1 - p12)(6 - 8r, + 2r2). 

Now, under the suppositions of Theorem A, 

lim /32- = 0; 
n - oo 

whence, applying Tchebycheff's theorem, we see that /2 has the sto- 
chastical limit E(#2) = 0, (n-*oo); that is, e and v being arbitrarily 
small, the probability 

P{12 1 >IE} <f7, 

provided n is sufficiently large. 
On the other hand, if we put 

yi+2 = 2r,yi+i - yi + a2, 

yi+3 = 2r,yi+2 - Yi+1 + a3, 

* . . . . . . . . . . . . 

yi+s = 2riyi+8l - yi+s-2 + aa; 

and if we insert yi+2 in the second equation of this system, yi43 in the 
third, and so on, we obtain, after reduction, 

(48) yi+s = C1yi+1 + C2yi + X8sy, 
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where 

(49) \8 = aOf8 + a1f8,- + * + a8-2f2, 

the values ao, a,, a8+2, being determined by the conditions 

aO = 1 a, = 2ri, 

ak+2 =2r1ak+l- ak. 

This equation is identical with 

(51) Yi+2 = 2r1yj+, -yi 

that is, with (46) considered as a precise equation. The solution of 
(51) or (50) can be obtained easily. We find 

(52) yt = A cos (27rt/L) + B sin (27rt/L), 

and 

(53) ak = C cos (27rk/L) + D sin (2r1k/L), 

where we have put 

(54) cos (27X/L) = ri, 

L being the period of the respective sinusoid. It is evident that, under 
the assumptions of Theorem A, (Iri I X <1), we shall have 

(55) L < 27r/arc cos X = H = constant. 

Two sinusoids must now be considered. The first, which will be 
denoted by Si, is determined by (51), or (52), and the initial points 
yi, yi+j. It is evident that C1yi+1+C2yi in (48) is the ordinate of Si 
which could be obtained in this form from (51) by successive substitu- 
tions. The deviation of the actual value of yi+a from S1 is X8o- as given 
by (48) and (49), the coefficients ak being the ordinates of the second 
sinusoid (S2) determined by (50) or (53), and the initial values ao= 1, 
a, = 2ri. But, if we put, in (53), k = 0, and then k = 1, we obtain 

C = 1, D = ri/\/l-r12. 

Hence the amplitude of S2 is 

V/C2 + D2 = 1/\/1-r12 < 1/\/l-X2 = K = constant. 

C = 1, D = ri/VP- ri. 
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Thus, taking into account that every ak in (49) has an upper limit 
?< /C2+D2, (n->oo) and remembering the theorems of my Metron 
memoir39 we conclude that X, has the stochastical limit = 0 and that, 
e and v being arbitrarily small and s arbitrarily large, the probability 
that the conditions 

X2 < ,X 3 < E ,X8< e, 

are simultaneously satisfied will be >1- provided n is sufficiently 
large. The formulas (54) and (55) complete the proof. 

To prove theorem B, we may proceed here as follows: It is seen by 
(43) and (45) that the correlation coefficient between yi and yi+i is 

A 2mr_ m+l 
(56) ri = ri (m m) = A 

A2mr 

and the correlation coefficient between A2yi and yi+i is given by 

(m+2, 
( m) )mA2m+mnr_(m+l) 

(57) p1 = ri(m+2,m) = 
/A2 (m+2)r- (m+2)A2mr_m 

where, using (26) we must put 
2n 

cn-t 
rt= 

n 

On the other hand, r_t being equal to rt, it can easily be seen that 

(58) C~2n 2mr 
m 2m 2n 

(58) Cn A2mr_ = E (- 1)kCk Cn-m+k = An+m, 
k=O 

where An+m is the coefficient of Xn+m in the expansion of (1 +X)2n 

(1- X)2m. Applying Cauchy's theorem we have 

An+m 1 f (1 + x)2n(l - X)2m dx. 
2An miJ xn+m+l 

If we put x = eiO, we obtain, after reduction, 

A [r 

An+m 1 ( )m22(n+m)/]| Cos 2n ?> sin 2m ? do.) 

39 E. Slutzky, "tber Stochastische Asymptoten und Grenzwerte," Metron, 
Vol. 5, N. 3, 1925, pp. 61-64. 
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Hence 

(9 1)m2n+ml .3 * (2n - 1). 1*3 * (2m - 1) 
(59) An+m = 1-23 * *(n+m) 

Thus we obtain, by (58), 

(60) A2mr_n 
(-1 )m2ml.3 * (2m - 1) 

(n + 1)(n + 2) ... (n + m) 

If we notice that 

A2m 2r_(m+l) - 2mr-(m+,) - 2A2mr-m + A2mr(m) 

where, evidently, 

A2mr-(m+1) = i2mr-(m-,) 

we get 
A2mr+l = 2(m+l)r-(m+l) + i2mr-m 

(61) (-1)m2ml13 * (2m - 1)(n - m) 

(n + 1)(n + 2)*** (n + m + 1) 

so that, by (56), (57), (60), and (61), we obtain 

(62) ri= (n-m)/(n + m + 1) 

and40 

/(2m + 1)(n + m + 2) 
(63) Pi1=-V2n3(+n1 

Now, it is evident that, n/m being constant, 

n/m - 1 

n/m + 1 

and 
P1 -12 (n ooc), 

which proves Theorem B. 

CORRECTIONS OF BASIC DATA 

The tables of figures which contain the series used in the present 
investigation are to be found in the original paper (loc. cit., pp. 57-64). 
As the preparation of them has involved a great deal of time and labor 

40 To apply this formula in the case of No. V, we should notice that Model III 
is approximately equivalent to the series (Yi) of Theorem B, with n = 400. 
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