- Nada es Gratis - https://nadaesgratis.es -

Cincuenta años de caos

lorenzEspero, querido lector, que el título no le haya asustado, aunque en la actual situación en que nos encontramos, tiene un aire agorero acongojante. Pero no, no va de eso. Me da un poco de vergüenza confesarlo, pero este post trata de algo muy importante, que debí haber escrito en enero (hablé del fin del mundo, que la verdad tampoco es moco de pavo), y que sólo ahora he recordado, al ver un artículo titulado "Chaos at fifty" ("El caos a los cincuenta"), de Adilson E. Motter y David K. Campbell. Y el caso es que el pasado enero se cumplieron 50 años de la publicación de un artículo titulado "Deterministic nonperiodic flow" ("Flujo determinista no periódico"), de Edward Norton Lorenz (1917-2008), que aparece en la foto estudiando sus simulaciones numéricas.

Tras ese inocente título se esconde uno de los mayores cambios de paradigma de la física, de la ciencia, y de nuestra manera de ver el mundo. Efectivamente, hasta esa época se creía que los sistemas dinámicos (aquellos que evolucionan en el tiempo) sólo podían tener tres tipos de comportamientos: tender a un estado estacionario (también llamado punto fijo) en el que dejan de modificarse; variar periódicamente, recuperando su comportamiento en un instante dado al cabo de un cierto período fijo y constante, o el llamado movimiento cuasiperiódico, que es la combinación de movimientos periódicos con períodos cuya relación no es un número racional, por lo que el sistema vuelve a ser casi como era cada cierto tiempo pero nunca exactamente. La verdad es que si uno lo piensa ingenuamente, no parece que vaya a haber otros tipos de evolución temporal, ¿no? ¿Cómo serían esos tipos adicionales?

Eso es lo que hace Lorenz en su trabajo: mostrarnos que hay un cuarto tipo de movimiento, que el llamó "no periódico" y que nosotros llamamos hoy "caótico". Lorenz era un meteorólogo (y de hecho el artículo está publicado en Journal of Atmospheric Sciences) que estudiaba el flujo de convección en un fluido situado entre dos capas fijas a temperaturas distintas (convección de Rayleigh) como modelo de uno de los mecanismos básicos de la circulación atmosférica. Simplificando matemáticamente las ecuaciones de dicho fenómeno, obtuvo las hoy famosas ecuaciones de Lorenz:

ecslorenz

Para esta discusión, no nos importa mucho qué representan las variables X, Y y Z, aparte de que describen la ya citada convección de manera muy estilizada. Como Lorenz no sabía resolverlas (ni nadie hasta hoy en día) lo que hizo fue integrarlas numéricamente con uno de los primeros ordenadores, y lo que vio fue esto:

grafica y

Lo que representa esta gráfica es la evolución temporal de la variable Y durante tres mil pasos temporales (mil en cada línea). Como vemos, estamos ante un tipo de evolución que sorprendió a Lorenz porque no encajaba en ninguna de las clasificaciones que conocía. Con los ordenadores de hoy en día, uno puede repetir este trabajo durante los pasos que quiera, y nunca encontrará que se repita algún patrón. Bienvenidos al mundo del caos (nombre que acuñaría unos años más tarde uno de los grandes pioneros de esta línea de investigación, Jim Yorke).

Con todo, lo importante no es que el movimiento no sea ni siquiera cuasiperiódico. Lorenz se dio cuenta de que pasaba algo muy extraño, y así lo escribió en el abstract del artículo: "(...) se encuentra que las soluciones no periódicas son normalmente inestables bajo pequeñas modificaciones, de manera que estados iniciales ligeramente distintos pueden evolucionar hasta convertirse en considerablemente diferentes." Esto es lo que técnicamente llamamos "dependencia exponencial de las condiciones iniciales" y popularmente ha acabado siendo conocido como "el efecto mariposa" (debido a una conferencia que, cuando su trabajo empezó a ser reconocido tras años de dormir en los estantes de  las bibliotecas, el propio Lorenz pronunció en 1972 ante la AAAS bajo el título "Does the flap of a butterfly's wings in Brazil set off a tornado in Texas?" ("¿Origina el aleteo de una mariposa en Brasil un tornado en Texas?"). Aquí he de decir, antes de que alguien me corrija en los comentarios, que ya Poincaré había anticipado este fenómeno en 1909, sin llegar a dar ejemplos como el que ahora presentaba Lorenz.

Para ilustrar esto, voy a utilizar un sistema más sencillo que el de Lorenz: la ecuación logística o de Verhulst, un modelo extraordinariamente sencillo del crecimiento de una población limitada por la necesidad de un recurso. En 1976, el biólogo teórico Robert May (hoy Lord May of Oxford) publicó un artículo, también muy apropiadamente titulado "Simple mathematical models with very complicated dynamics" ("Modelos matemáticos sencillos con dinámicas muy complicadas") en el que mostraba que esta aparentemente sencilla recursión

latex-image-1

también daba lugar a secuencias de números x que no se repetían ni caían en ciclos (salvo para algunas excepciones en las que el primer número de la recursión se elige expresamente), es decir, al equivalente discreto del movimiento caótico. Y, como tal, exhibe también esa dependencia de las condiciones iniciales, cómo pone de manifiesto el siguiente ejemplo:

trayectorias

En la tabla se recogen dos recursiones generadas a partir de la ecuación de arriba, partiendo de los valores que se indican para t=0 (t, o el número de iteración, se recoge en la primera columna), y que se diferencian sólo en la décima cifra decimal. Así, vemos que en la iteración 14, la diferencia está ya en la quinta cifra decimal, y en la iteración 29, ¡todas las cifras son distintas! Para que esto no quede en números, le dejo también una muestra de las gráficas que estudiaba tan atentamente Lorenz:

klimate_kaos1

Aquí, en esta "inestabilidad", que decía Lorenz, radica el gran cambio de paradigma que supuso la teoría del caos. Recordemos que hasta este momento, la idea dominante en la física era la del "universo mecánico" ("clockwork universe"), que había sintetizado Laplace cuando en 1820 escribió aquello de que "(...)si este intelecto fuera lo suficientemente vasto como para someter los datos a análisis, podría condensar en una simple fórmula el movimiento de los grandes cuerpos del universo y del átomo más ligero; para tal intelecto nada podría ser incierto y el futuro así como el pasado estarían frente sus ojos." (De nuevo, antes de que me corrijan en los comentarios, este determinismo se había roto ya con la aparición a principios del siglo XX de la mecánica cuántica, pero todo el mundo daba por hecho que la indeterminación cuántica se limitaba al mundo submicroscópico y que no tenía ningún impacto en nuestra vida cotidiana). Pero claro, nosotros no somos ese intelecto perfecto del que habla Laplace, y conocemos el estado actual del universo con cierto margen de error, que proviene de nuestra ineptitud, o de nuestros aparatos de medida. Volviendo al ejemplo anterior, si nos hemos equivocado en la décima cifra decimal de nuestro dato inicial, al cabo de tan sólo 33 iteraciones no somos capaces ni siquiera de decir si nuestro sistema va a estar a la izquierda o la derecha de 1/2. Fíjese, querido lector, que ya no hablo de intentar predecir el número exacto, sino simplemente ¡si está a un lado o a otro! Lo haríamos igual de bien echándolo a cara o cruz...

Es muy importante que observemos que en esto del caos no hay nada aleatorio. Absolutamente nada. Las ecuaciones son puramente deterministas, y si siempre les metemos el mismo dato, producen el mismo resultado como respuesta. Es más, ni siquiera estoy diciendo que sea imposible predecir: a corto plazo, las trayectorias del sistema no se ven muy afectadas por el error inicial. Si en el ejemplo, para mis propósitos, me bastase tener cinco cifras correctas, puedo predecir bien 13 pasos temporales. Ningún problema; no hay nada mágico en la ley de la evolución. Lo que está pasando es que como el dato inicial no se conoce con precisión infinita, sólo podremos saber qué le va a pasar al sistema durante una cierta ventana temporal, ventana que aumentará cuanto mejor conozcamos el punto de partida, claro, pero que nunca será infinita.

¿Le suena esto de algo? Sí, seguro que sí, y a Lorenz también: a las predicciones meteorológicas, que era lo que él estudiaba. Traduzco de las conclusiones de su artículo: "Cuando nuestros resultados sobre la inestabilidad del flujo no periódico se aplican a la atmósfera, que es ostensiblemente no periódica, indican que la predicción de un futuro suficientemente lejano es imposible por ningún método, a no ser que las condiciones actuales se conozcan exactamente." Así de claro. Aunque uno conozca perfectamente las leyes físicas que rigen la dinámica atmosférica, nunca, nunca, nunca podrá predecir el tiempo (que no el clima, aviso para negacionistas del cambio climático, que no es la misma cosa) más allá de un cierto intervalo. Intervalo que hoy en día, después de elaborar modelos muy completos y mejorar la precisión con la que medimos las condiciones atmosféricas, llega a dos o tres días.

La cosa está, querido lector, en que este paradigma de la impredecibilidad determinista es muy general. El caos aparece en la mayoría de los sistemas físicos, ya que lo que se necesita para su aparición es muy poco: que el sistema sea no lineal: es decir, que la evolución de las magnitudes de interés no sea simplemente proporcional a ellas mismas, sino que tenga términos cruzados, o potencias, como los términos XY y XZ en las ecuaciones de Lorenz o el x cuadrado de la ecuación logística. Esto, para bien o para mal, es la regla, no la excepción. De aquí la importancia del descubrimiento de Lorenz. No hablamos sólo de predecir el tiempo, sino de predecir en general. Y eso afecta también a la evolución de la economía, claro, que se rige habitualmente por ecuaciones no lineales; pero de la historia del caos en la economía, de lo que puede aportar y ha aportado hasta ahora, hablará Jesús Fernández Villaverde (mucho más autorizado que yo para ello, dónde va a parar) en un post que aparecerá el próximo 23 de julio. Cuánto vayamos a poder predecir de las magnitudes que nos interesan dependerá de las ecuaciones que las rijan y de lo bien que sepamos cómo estamos ahora. En todo caso, a partir del trabajo de Lorenz, siempre tendremos que tener presente que nunca podremos predecir la economía, o el tiempo, o la trayectoria de la Tierra, o lo que sea, en un futuro arbitrariamente lejano. Je suis désolé, monsieur Laplace, c'est la vie.